Why, a hexvex of course!

  • 1 Post
  • 322 Comments
Joined 3 years ago
cake
Cake day: June 10th, 2023

help-circle






  • On the contrary - it’s not Google getting one’s data that is to be avoided. They are a law abiding (if law bending) entity.

    The issue is there are apps on the store that takes data for third parties, who then proceed to sell that data to threat actors who have a phone number and a user profile (great for scam calls).

    The adverts within apps can also be predatory - preying on gambling addiction (I know this for a fact, I worked in the gambling industry), loneliness (AI partner boom), and inexperience (oh god the crypto scams…).

    There is a greater probability of issues, but the severity is underplayed if examined without a psychological lense. When this is taken into account - the playstore offers a greater probability of lesser harm, and an equal (or greater) probability of severe harm.




  • This was kind of breach so predictable even surprisedpikachu.txt isn’t enough, but it must be done.

    ⢀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⣠⣤⣶⣶ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⢰⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣀⣀⣾⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⡏⠉⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿ ⣿⣿⣿⣿⣿⣿⠀⠀⠀⠈⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠁⠀⣿ ⣿⣿⣿⣿⣿⣿⣧⡀⠀⠀⠀⠀⠙⠿⠿⠿⠻⠿⠿⠟⠿⠛⠉⠀⠀⠀⠀⠀⣸⣿ ⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣴⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⡟⠀⠀⢰⣹⡆⠀⠀⠀⠀⠀⠀⣭⣷⠀⠀⠀⠸⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠈⠉⠀⠀⠤⠄⠀⠀⠀⠉⠁⠀⠀⠀⠀⢿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⢾⣿⣷⠀⠀⠀⠀⡠⠤⢄⠀⠀⠀⠠⣿⣿⣷⠀⢸⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⡀⠉⠀⠀⠀⠀⠀⢄⠀⢀⠀⠀⠀⠀⠉⠉⠁⠀⠀⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿





  • HexesofVexes@lemmy.worldtoScience Memes@mander.xyzIn this essay...
    link
    fedilink
    English
    arrow-up
    12
    ·
    edit-2
    3 months ago

    Ehh…

    So, it’s more a case that the system cannot prove it’s own consistency (a system cannot prove it won’t lead to a contradiction). So the proof is valid within the system, but the validity of the system is what was considered suspect (i.e. we cannot prove it won’t produce a contradiction from that system alone).

    These days we use relative consistency proofs - that is we assume system A is consistent and model system B in it thus giving “If A is consistent, then so too must B”.

    As much as I hate to admit it, classical set theory has been fairly robust - though intuitionistic logic makes better philosophical sense. Fortunately both are equiconsistent (each can be used to imply the consistency of the other).