• CanadaPlus@lemmy.sdf.org
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          3 months ago

          Umm, AKCTSHUALLY it gets more like O(n2) in parallel, assuming you’re using a physically achievable memory. There’s just a lot of criss-crossing the entries have to do.

          Strassen’s algorithm gets O(n2.8) in serial by being terrible, and the weird experimental ones get O(n2.3), but the asymptotic benefits of Coppersmith-Winograd and friends only kick in if you’re a Kardashev III civilisation computing a single big product on a Dyson sphere.

          • Mikina@programming.dev
            link
            fedilink
            arrow-up
            3
            ·
            3 months ago

            I can’t decide whether this sentence is a joke or not. It has the same tone that triggers my PTSD from my CS degree classes and I also do recognize some of the terms, but it also sounds like it’s just throwing random science terms around as if you asked a LLM to talk about math.

            I love it.

            Also, it’s apparently also real and correct.

  • Venator@lemmy.nz
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    3 months ago

    Why would you want a specific time complexity? Wouldn’t it be better if it’s faster? /s

    • JaddedFauceet@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      3 months ago

      Likely they want a lower time complexity.

      for example a question can be trivially solved in O(n^2). but there is no know < O(n) solution, so they ask for O(n)

      • Tiefling IRL@lemmy.blahaj.zone
        link
        fedilink
        arrow-up
        2
        ·
        edit-2
        3 months ago

        Most of the time O(n^2) is optimized to O(n log n). You’ll get some sort of award if you can figure out a sorting function that runs in O(n).